Intracellular signal transduction for migration and actin remodeling in vascular smooth muscle cells after sphingosylphosphorylcholine stimulation.
نویسندگان
چکیده
Molecular mechanisms underlying migration of vascular smooth muscle cells (VSMCs) toward sphingosylphosphorylcholine (SPC) were analyzed in light of the hypothesis that remodeling of the actin cytoskeleton should be involved. After SPC stimulation, mitogen-activated protein kinases (MAPKs), including p38 MAPK (p38) and p42/44 MAPK (p42/44), were found to be phosphorylated. Migration of cells toward SPC was reduced in the presence of SB-203580, an inhibitor of p38, but not PD-98059, an inhibitor of p42/44. Pertussis toxin (PTX), a Gi protein inhibitor, induced an inhibitory effect on p38 phosphorylation and VSMC migration. Myosin light chain (MLC) phosphorylation occurred after SPC stimulation with or without pretreatment with SB-203580 or PTX. The MLC kinase inhibitor ML-7 and the Rho kinase inhibitor Y-27632 inhibited MLC phosphorylation but only partially inhibited SPC-directed migration. Complete inhibition was achieved with the addition of SB-203580. After SPC stimulation, the actin cytoskeleton formed thick bundles of actin filaments around the periphery of cells, and the cells were surrounded by elongated filopodia, i.e., magunapodia. The peripheral actin bundles consisted of alpha- and beta-actin, but magunapodia consisted exclusively of beta-actin. Such a remodeling of actin was reversed by addition of SB-203580 and PTX, but not ML-7 or Y-27632. Taken together, our biochemical and morphological data confirmed the regulation of actin remodeling and suggest that VSMCs migrate toward SPC, not only by an MLC phosphorylation-dependent pathway, but also by an MLC phosphorylation-independent pathway.
منابع مشابه
Mechanisms of Vascular Smooth Muscle Cell Migration Endothelial Cell Migration During Angiogenesis Leukocyte Migration in the Vascular Wall Molecular Mechanisms of Endothelial Cell Migration Endothelial Migration in Vascular Development
Smooth muscle cell migration occurs during vascular development, in response to vascular injury, and during atherogenesis. Many proximal signals and signal transduction pathways activated during migration have been identified, as well as components of the cellular machinery that affect cell movement. In this review, a summary of promigratory and antimigratory molecules belonging to diverse chem...
متن کاملMechanisms of vascular smooth muscle cell migration.
Smooth muscle cell migration occurs during vascular development, in response to vascular injury, and during atherogenesis. Many proximal signals and signal transduction pathways activated during migration have been identified, as well as components of the cellular machinery that affect cell movement. In this review, a summary of promigratory and antimigratory molecules belonging to diverse chem...
متن کاملThe roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration
Smooth muscle cell migration has been implicated in the development of respiratory and cardiovascular systems; and airway/vascular remodeling. Cell migration is a polarized cellular process involving a protrusive cell front and a retracting trailing rear. There are three cytoskeletal systems in mammalian cells: the actin cytoskeleton, the intermediate filament network, and microtubules; all of ...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملCytoskeletal Effects of Rho-Like Small Guanine Nucleotide–Binding Proteins in the Vascular System
Rho-like small GTPases, with their main representatives (Rho, Rac, and Cdc42), have been recognized in the past decade as key regulators of the F-actin cytoskeleton. Rho-like small GTPases are now known to play a major role in vascular processes caused by changes in the actin cytoskeleton, such as smooth muscle cell contraction, endothelial permeability, platelet activation, and leukocyte migra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 291 3 شماره
صفحات -
تاریخ انتشار 2006